Liulin-E094, Part of ESA “DOSMAP experiment, Inside American segment of ISS
Satellite provider: NASA
Experiment name: ESA, Dosimetric Mapping, https://www.nasa.gov/mission_pages/station/research/experiments/1003.html
Instrument name: Liulin-E094
Cooperation: Bulgaria, Germany
Begin-end of data: 11/05/2001-26/07/2001/
PI/CoPI: G. Reitz, DLR; Ts. Dachev, SRTI.
Main description References: Reitz et al., (2005), http://rpd.oxfordjournals.org/cgi/content/abstract/116/1-4/374 Dachev et al., 2002), http://dx.doi.org/10.1016/S0273-1177(02)00411-8
Units: Size [mm]/Mass [kg]: 1 CIU (120х80х60 mm, 0.4 kg); 4 MDU (100х64х24 mm, 0.23 kg)
Place: Inside of the American Lab. and Node 1 of the American segment of ISS
Shielding: [g cm-2]: 2->20 g cm-2
Resolution: [sec]/[min]: 30 sec
Liulin MDU4 inside of the US Laboratory module
Liulin-E094 instrument (CIU and 3 MDUs).
Block-diagram of Liulin-E094 instrument
Dose measurement algorithms and formulas
The main measured parameter in the MDUs of Liulin-E094 is the amplitude of the pulse after the CSA, generated by a particle or a photon partially or fully crossing the detector (Dachev et al., 2002). The amplitude of the pulse is proportional by a factor of 240mVMeV−1to the energy deposited in the detector and to the dose, respectively. These amplitudes are digitized in an 8-bit ADC and organized in a 256-channel deposited energy spectrum.
By definition the dose in the silicon detector DSi [Gy] is one joule deposited in 1 kg of matter. The MDUs absorbed dose is calculated by dividing the summarized energy deposition in the spectrum in joules by the mass of the detector in kilograms:
where K is a coefficient. MD is the mass of the detector, and Eli is the energy loss in Joules in channel i. The energy in MeV is proportional to the amplitude A of the pulse: Eli [MeV] =A [V]/0.24 [V/MeV], where 0.24 [V/MeV] is a coefficient dependent on the preamplifier used and its sensitivity.
All 255 deposited dose values, depending on the deposited energy for one exposure period, form the deposited energy spectrum. Channel 256 accumulates all pulses with amplitudes higher than the upper energy of 20.83MeV measured by the spectrometer. The methods for characterization of the type of incoming space radiation are described in Dachev (2009), http://dx.doi.org/10.1016/j.asr.2009.08.007; and Dachev et al. (2017), https://doi.org/10.1002/2016SW001580.
4 dosimeters named mobile dosimetry units (MDU1-MDU4) was used for measurements inside of the American segment of ISS. In the picture below is seen the external view of MDU1 together with the orientation axes. This direction is toward the minimal shielding of the detector of the MDU. The semiconductor detector of the MDU1 was mounted approximately 4 mm below the 0.5 mm thick aluminum cover plate. Furthermore, there was shielding from 0.07 mm copper and 0.2 mm plastic, which provided 0.22 g cm-2 of total shielding from the front side. The calculated required kinetic energy of particles arriving perpendicular to the detector is 0.665 MeV for electrons and 16.5 MeV for protons. This means that only electrons and protons with energies exceeding the values listed above can cross the MDU1 shielding materials and reach the detector surface.
External view of MDU1
The 4 dosimeters MDU1-MDU4 was distributed inside the US LAB and NOD 1 according to the following diagrams:
The positions were coded and implemented in the MDU data as follows:
ComboBox1->Items->Add("NOA"); // Node Overhead Aft
ComboBox1->Items->Add("NOF"); // Node Overhead Forward
ComboBox1->Items->Add("NPF"); // Node Port Forward
ComboBox1->Items->Add("NDF"); // Node Deck Forward
ComboBox1->Items->Add("NSM"); // Node Starboard Middle
ComboBox1->Items->Add("NSA"); // Node Starboard Aft
ComboBox1->Items->Add("LOA"); // Lab Overhead Aft
ComboBox1->Items->Add("LOF"); // Lab Overhead Forward
ComboBox1->Items->Add("LSF"); // Lab Starboard Forward
ComboBox1->Items->Add("LSA"); // Lab Starboard Aft
ComboBox1->Items->Add("LPA"); // Lab Port Aft
ComboBox1->Items->Add("LPF"); // Lab Port Forward
ComboBox1->Items->Add("RET"); // RETention net
ComboBox1->Items->Add("PIL"); // to PILle compare
The directions of the MDU detectors orientation were coded and implemented in the MDU data as follows:
ComboBox2->Items->Add("O"); // Overhead
ComboBox2->Items->Add("P"); // Port
ComboBox2->Items->Add("D"); // Deck
ComboBox2->Items->Add("S"); // Starboard
ComboBox2->Items->Add("U"); // Unknown
Table 1. Description of Liulin-E094 locations.
|
MDU1 |
MDU2 |
MDU3 |
MDU4 |
TABLE1 (11/5/01 30/05/01) |
Node1 – Zenith area of aft. hatch, opposite of US Lab (with TLD 102 and NTDP4.F) |
US Lab - overhead seat track near TEPC and DOSTEL location in Retention Net |
US Lab – Zenith area of forward hatch |
US Lab – on Zenith area of aft. hatch ( with TLD 107 and NTDP5.F) |
TABLE2 (31/05/01 06/06/01) |
Node1 – Zenith area of starboard hatch (with TLD 105) |
Node1 – Port side close to US Lab (combined with TLD 106) |
US Lab – seat track, close to the forward hatch on the starboard side( with TLD 109) |
US Lab – Seat track on starboard side close to aft. hatch ( with TLD 110) |
TABLE3 (07/06/01 14/06/01) |
US Lab – on BBND (combined with TLD 103) |
Node1 – Zenith area of forward hatch (combined with TLD 104) |
Node1 – Nadir area of forward hatch ( with TLD 108) |
US Lab – seat track on starboard side close to forward hatch (with TLD 109) |
TABLE4 15/06/01 25/06/01) |
Node1 – Zenith area of starboard hath (combined with TLD 105) |
Node1 – Port side close to US Lab (combined with TLD 106) |
US Lab – Seat track on starboard side close to aft. hatch ( with TLD 110) |
US Lab – Seat track on port side close to forward hatch (with TLD 111) |
TABLE5 (26/06/01 05/07/01) |
US Lab – Seat track on port side close to aft. hatch ( with TLD 112) |
US Lab – overhead seat track near TEPC and DOSTEL location in Retention Net |
US Lab – Zenith area of forward hatch |
Node1 – Zenith area of aft. hatch , opposite of US Lab( with TLD 102 and NTDP4.F) |
TABLE6 (06/07/01 13/07/01) |
US Lab – on BBND (combined with TLD 103) |
Node1 – Zenith area of forward hatch (combined with TLD 104) |
US Lab – on Zenith area of aft. hatch (with TLD 107 and NTDP5.F) |
Node1 – Nadir area of the forward hatch (combined with TLD 108) |
TABLE7 (14/07/01 25/07/01) |
US Lab – Seat track on port side close to forward hatch (with TLD 111) |
US Lab – Seat track on port side close to aft. hatch (with TLD 112) |
US Lab – overhead seat track near TEPC and DOSTEL location in Retention Net |
US Lab – Zenith area of forward hatch |
Full text data string description
MDU1
Date/Time (DD/MM/YYYY hh:mm:ss); ORBIT No, altitude (ALT) (km); longitude (LONG) (Deg); latitude (LAT) (Deg); L value (L); total magnetic field strength (BMAG) (Gauss); local time (LT) (hours); magnetic local time (MLT) (hours); flux (FLUX1) (1/cm2 s); absorbed dose rate (DOSE1 (mGy/hour); D1/F1) (nGy cm2 particle-1); counts (COUNTS1); position (POSITION1); direction (DIRECTION1).
MDU2
Date/Time (DD/MM/YYYY hh:mm:ss); ORBIT No, altitude (ALT) (km); longitude (LONG) (Deg); latitude (LAT) (Deg); L value (L); total magnetic field strength (BMAG) (Gauss); local time (LT) (hours); magnetic local time (MLT) (hours); flux (FLUX2) (1/cm2 s); absorbed dose rate (DOSE2 (mGy/hour); D2/F2) (nGy cm2 particle-1); counts (COUNTS2); position (POSITION2); direction (DIRECTION2).
MDU3
Date/Time (DD/MM/YYYY hh:mm:ss); ORBIT No, altitude (ALT) (km); longitude (LONG) (Deg); latitude (LAT) (Deg); L value (L); total magnetic field strength (BMAG) (Gauss); local time (LT) (hours); magnetic local time (MLT) (hours); flux (FLUX3) (1/cm2 s); absorbed dose rate (DOSE3 (mGy/hour); D3/F3) (nGy cm2 particle-1); counts (COUNTS3); position (POSITION3); direction (DIRECTION3).
MDU4
Date/Time (DD/MM/YYYY hh:mm:ss); ORBIT No, altitude (ALT) (km); longitude (LONG) (Deg); latitude (LAT) (Deg); L value (L); total magnetic field strength (BMAG) (Gauss); local time (LT) (hours); magnetic local time (MLT) (hours); flux (FLUX4) (1/cm2 s); absorbed dose rate (DOSE4 (mGy/hour); D4/F4) (nGy cm2 particle-1); counts (COUNTS4); position (POSITION4); direction (DIRECTION4).
All Liulin-E094 full text data are separated in 4 files for the period 11 May-25 July. They are available online at: http://esa-pro.space.bas.bg/datasources/LIULIN_E094. All full text files are in csv format.
Additional references, concerning Liulin-E094 data:
Badavi, F.F., (2014), Validation of the New Trapped Environment AE9/AP9/SPM at Low Earth Orbit, Advances in Space Research, 54, 917-928, http://dx.doi.org/10.1016/j.asr.2014.05.010.
Burmeister, S., R. Beaujean, F. Petersen, G. Reitz, Post Flight Calibration of DOSTEL with Heavy Ions During the First ICCHIBAN Run at HIMAC, UIC, Paris, France. http://wrmiss.org/workshops/seventh/burmeister.pdf
Dachev, T.P, W. Atwell, E. Semones, B. Tomov and B. Reddell, ISS observations of the trapped proton Anisotropic effect: a comparison with model calculations, 9th Workshop on Radiation Monitoring for the International Space Station, 7-9 September 2004, Atominstitute of the Austrian Universities, Vienna, Austria. http://wrmiss.org/workshops/ninth/radiation/atwell.pdf
Dachev, T.P., F. Spurny, G. Reitz, B.T. Tomov, P.G. Dimitrov and Y.N. Matviichuk, Simultaneous investigation of galactic cosmic rays on aircrafts and on International Space Station, Advances in Space Research, Volume 36, Issue 9, Pages 1665-1670, 2005. http://dx.doi.org/10.1016/j.asr.2005.05.073
Dachev, T., Atwell, W. Semones, E.; Tomov, B., Reddell, B. ISS Observations of SAA radiation distribution by Liulin-E094 instrument on ISS, Adv. Space Res., 37, 1672-1677, 2006. http://dx.doi.org/10.1016/j.asr.2006.01.001
Dachev, T.P., B.T. Tomov, Yu.N. Matviichuk, P.G. Dimitrov, N.G. Bankov, Relativistic Electrons High Doses at International Space Station and Foton M2/M3 Satellites, Adv. Space Res., 44, 1433-1440, 2009. http://dx.doi.org/10.1016/j.asr.2009.09.023
Dachev, T.P., Characterization of near Earth radiation environment by Liulin type instruments, Adv. Space Res., 44, 1441-1449, 2009. http://dx.doi.org/10.1016/j.asr.2009.08.007
Dachev, T.P., J.V. Semkova, B.T. Tomov, Yu.N. Matviichuk, Pl.G. S. Maltchev, R. Koleva, Pl., Dimitrov, N.G. Bankov, V.V., Shurshakov, V.V., Benghin, E.N., Yarmanova, O.A. Ivanova, D.-P. Häder, M.T. Schuster, G. Reitz, G. Horneck, Y. Uchihori, H. Kitamura, O. Ploc, J. Kubancak, I. Nikolaev, Overview of the Liulin type instruments for space radiation measurement and their scientific results, 92–114, 2015. http://dx.doi.org/10.1016/j.lssr.2015.01.005
Nealy, J. E., F. A. Cucinotta, J. W. Wilson, F. F. Badavi, N. Zapp, T. Dachev, B.T. Tomov, E. Semones, S. A. Walker, G. de Angelis, S. R. Blatting, W. Atwell, Pre-engineering spaceflight validation of environmental models and the 2005 HZETRN simulation code, Adv. Space Res., 40, 11, 1593-1610, 2007.
Slaba, T.C., S.R. Blatting, F.F. Badavi, N.N. Stoffle, R.D. Rutledge, K.T. Lee, E.N. Zappe, T.P. Dachev and B.T. Tomov, Statistical Validation of HZETRN as a Function of Vertical Cutoff Rigidity using ISS Measurements, Adv. Space Res., 47, 600-610, 2011. http://dx.doi.org/10.1016/j.asr.2010.10.021
Wilson, J. W., J. E. Nealy, T. Dachev, B.T. Tomov, F. A. Cucinotta, F. F. Badavi, G. de Angelis, N. Leutke, W. Atwell, Time serial analysis of the induced LEO environment within the ISS 6A, Adv. Space Res., 40, 11, 1562-1570, 2007. doi:10.1016/j.asr.2006.12.030
Please acknowledge data provider:
1) Tsvetan Dachev, SRTI-BAS: tdachev@bas.bg or: tdachev59@gmail.com
URL: http://scholar.google.com/citations?user=uzmW_mwAAAAJ
2) Borislav Tomov, SRTI-BAS, btomov49@abv.bg.