Liulin-5, Part of “Matroshka-R”, Inside Russian segment of ISS

Satellite provider: ROSCOSMOS
Experiment name: Matroshka
Instrument name: Liulin-5

Cooperation: Bulgaria, Russia
Begin-end of data: 17/05/2007-
PI/CoPI: V. Petrov, IMBP, J. Semkova, SRTI
Main description Reference:
Semkova et al., 2003, http://dx.doi.org/10.1016/S0273-1177(02)00952-3 and 2008, http://dx.doi.org/10.1016/j.asr.2007.01.008

Units: Size [mm]/Mass [kg]: Liulin-5, Dosimetric telescope by 3 detectors (F50/30x191 mm, 0.4 kg); Electronic block, (160х90х30 mm, 0.8 kg)
Place, Shielding [g cm-2]: Inside the Russian segment of the ISS; >20 g cm-2;
Resolution [sec]/[min]: 20 or 90 sec for dose rate and flux, 15 or 85 min for LET and deposited energy spectra

 

External view of Phantom in MIM1 module and Liulin-5 detector

External view of R3DE instrument

 

Block-diagram of Liulin-5 instrument.

Dose measurement algorithms and formulas*

From each detector the energy deposition spectrum for a measurement cycle is recorded in two 256 channel sub-ranges. Then the overall energy deposition spectrum is constructed in 512 channels. The energy ΔE deposited in the detector is proportional to the value k1å(iNi)+k2å(jNj), and the incident particle flux is proportional to åNi.+åNj. Here i and j are the spectral channel numbers in the two sub-ranges (lowLET and highLET), Ni and Nj are the amounts of particles registered in channels i and j of the corresponding sub-ranges, and k1 and k2 are normalization coefficients. The values å(iNi), å(jNj), åNi, åNj are recorded for given time intervals and are used for calculation of the doses and particle fluxes rates.

The absorbed dose in the detector is calculated as  D = ΔE/m,

where m is the mass of the detector.

The energy deposition spectrum measured in the D1 detector in coincidence mode with D2 is recorded and used to obtain the LET spectrum. Since the incidence angle of the particles is not measured, the energy deposition is converted into a mean LET in silicon as: LET(Sii) = ΔEi/hD1

where ΔEi is the deposited energy in channel i, LET (Sii) is the LET in silicon in channel i (here i is from 1 to 512) and hD1 is the thickness of D1. Calculations show that the dependence of the effective area of the telescope on the particle incident angle is practically linear and decreases from 2.324 сm2 at 0o between the telescope axis and flux to 0 сm2 at 40.7o. The average increase of the particle range in the detector in the case of incidence not parallel to the axis is 7%.

The LET spectra in silicon are used for calculation of the differential and integral LET spectra in water, the absorbed dose rates and the quality factors. The energy deposition in water is taken to be 1.24. LET (H2O) is then found by the following relation:

LET (H2O) = 1.24xLET (Si) /2.34             (6)

Taking into account that the relation between LET (H2O) and LET (Si) changes with proton energy Ep from 1.27 for Ep =30 MeV to 1.21 for Ep = 1000 MeV and that for a typical energy Ep = 100 MeV the conversion coefficient is 1.24, the maximum difference of LET (H2O) obtained by using a real conversion function and the simple conversion factor is less than 3%.

To obtain the dose of the isotopically incident particles from the dose measured by the D1-D2 telescope, the dose calculated from the D1-D2 coincidence spectrum is multiplied by a correction coefficient of 13.5.

Full text data string description

Date/Time (DD/MM/YYYY hh:mm:ss); mode of operation; “1” means Standard mode - dose and flux rates have a time resolution of 90 s, the cycle of measurement of energy deposition spectra and LET spectra is 90 min. “2” means Fast mode - dose and flux rates have a time resolution of 20 s, energy deposition spectra and LET spectra are constructed for every 15 min of measurements. This mode is used for measurements in the South Atlantic Anomaly (SAA) or during Solar Particle Events; ascending or descending (A/D); altitude (ALT) (km) longitude (LONG) (deg); latitude (LAT) (deg); L value (L); total magnetic field strength (BMAG) (Gauss);  INVLAT (invariant latitude) (deg); LT (local time) (hours); MLT (magnetic local time) (hours); absorbed dose rate1D* (DOSE) (mGy h-1); ); absorbed dose rate2D (DOSE) (mGy h-1);); absorbed dose rate3D (DOSE) (mGy h-1); flux1D (FLUX) (cm-2 s-1); flux2D (FLUX) (cm-2 s-1); flux3D (FLUX) (cm-2 s-1); (*1D means first detector). All files are in csv format.

Link to the full text files: http://esa-pro.space.bas.bg/datasources/LIULIN_5

 

Table with available data

Start

(yyyy mm dd hh mm ss)

End

(yyyy mm dd hh mm ss)

Position in the Russian segment of ISS

 

Valid data

2007 07 03 10 25 09

2007 07 09 10 45 13

PIER module,

 

all

07 07 03 10 23 39

07 07 09 11 10 05

Inside the phantom

05 09 2007 13:09:33

10/09/2007 07:32:17

 

all

2007 09 05 13 10 18

2007 09 10 07 34 33

07 09 05 13 08 48

07 09 10 02 58 47

2007 10 16 14 38 47

2007 10 31 23 58 34

All- partially

2007 11 01 00 00 06

2007 11 25 00 57 21

all- partially

2007 12 01 00 01 11

2007 12 31 23 59 36

F1, F2, D1, D2

2008 01 12 14 28 08

2008 01 31 23 28 22

all

2008 02 01 00 01 27

2008 02 29 23 59 52

all

2008 03 01 00 00 43

2008 03 31 23 59 30

all

2008 04 01 00:00:12

2008 04 30 23 59 10

 

all

 

 

2008 05 01 00 00 41

2008 05 31 23 59 39

2008 06 01 00 00 10

2008 06 23 14 30 52

 

F1, F2, D1, D2

 

 

2008 07 21 11 22 11

2008 07 31 23 59 10

2008 08 01 00 00 41

2008 08 31 23 59 08

 

F1, F2, D1, D2

 

 

2008 10 23 21 11 35

2008 11 01 20 22 00

2008 09 01 00 00 35

2008 09 30 23 59 30

 

 

 

F1, F2, D1, D2

2008 10 01 99 91 00

2008 10 18 14 51 14

2008 12 01 00 00 37

2008 12 12 09 17 26

2009 02 23 12:40:06

2009 02 23 12 40 06

2009 02 28 23:59:50

2009 02 28 23 59 50

 

all

31/03/2009 08:33:25

15/06/2009 11:56:38

PIER module,

 

F2, F3, D2, D3

 

 

Inside the

2009 03 13 20 48 40

2009 03 31 23 59 36

phantom

 

2009 04 01 00 10 55

 

2009 04 30 23 59 22

PIER module, Inside the phantom

 

F2, F3, D2, D3

 

2009 05 01 00 00 52

 

2009 05 29 16 54 08

PIER module, Inside the phantom

 

F2, F3, D2, D3

 

2009 06 23 12 39 09

 

2009 06 30 23 59 12

PIER module, Inside the phantom

 

F2, D2

29/06/2009 09:57:29

10/07/2009 19:02:52

PIER module,

 

F2, D2

 

 

Inside the

2009 07 01 00 01 14

2009 07 31 09 18 32

phantom

07/08/2009 12:47:12

25/08/2009 17:56:47

PIER module,

 

F2, D2

2009 08 01 00 00 44

2009 08 31 23 58 33

Inside the

phantom

2009 08 25 14 16 48

2009 09 05 02 22 27

F2, F3, D2, D3

18/11/2009 16:31:30

23/11/2009 10:04:27

PIER module,

 

F2, F3, D2, D3

2009 11 23 10 58 19

2009 11 26 16 04 56

Inside the

phantom

2009 12 01 00 00 50

2009 12 31 23 59 55

F2, D2,

07/01/2010 13:18:27

09/01/2010 06:40:34

PIER module,

 

F2, D2,

 

 

Inside the

2010 01 01 00 00 11

2010 02 28 23 58 39

phantom

03/03/2010 15:00:11

14/03/2010 23:37:22

PIER module,

 

F2, F3, D2, D3

 

 

Inside the

2010 03 01 00 00 09

2010 03 14 23 41 55

phantom

 

27/12/2011 18:50:48

2011 12 27 18 50 48

 

21/05/2012 12:24:23

2011 12 31 23 59 14

MIM1, Inside

 

F1,D1, F3, D3

the phantom (behind panel

206)

2012 01 01 00 02 38

2012 02 01 00 00 05

2012 03 01 00 00 09

2012 01 31 23 39 26

2012 02 29 23 58 39

2012 03 31 23 59 22

 

 

MIM1, Inside the phantom (behind panel 206)

 

F1, F3, D1, D3

2012 04 01 00 00 52

2012 04 30 23 59 15

F1, F3, D1, D3

2012 05 01 00 00 44

2012 05 21 12 18 28

F1, F3, D1, D3

2012 05 21 12 18 28

2012 05 31 23 59 09

 

MIM1, Outside the phantom (behind panel205)

F1, F3, D1, D3

2012 06 01 00 00 39

2012 06 30 23 58 51

F1, F3, D1, D3

2012 07 01 00 00 21

2012 07 31 23 59 39

F1, F3, D1, D3

2012 08 01 00 01 11

2012 08 31 14 02 22

F1, F3, D1, D3

31/08/2012 14:59:01

12/09/2012 14:48:17

MIM1, Outside the phantom (behind panel 207)

 

 

2012 08 31 14 59 00

 

2012 09 12 14 46 46

 

F1, F2, F3, D1, D2, D3

12/09/2012 16:51:32

14/10/2012 20:10:32

 

 

 

 

 

 

 

 

 

 

 

 

MIM1, Inside the phantom (behind panel 206)

 

2012 09 12 16 52 45

2012 09 28 06 00 16

F1, F2, F3, D1,D2, D3

2012 09 28 05 01 46

2012 10 31 23 58 40

F1, F3, D1, D3

2012 11 01 00 00 10

2012 11 30 23 59 59

F1, F3, D1, D3

2012 12 01 00 01 29

2012 12 31 23 59 03

F1, F3, D1, D3

2013 01 10 00 00 13

2013 01 24 05 42 28

F1, F3, D1, D3

2013 01 24 06 49 36

2013 02 06 13 24 17

F1, F3, D1, D3

2013 02 06 14 44 17

2013 02 21 08 33 02

F1, F3, D1, D3

2013 02 21 09 09 06

2013 03 09 11 11 32

F1, F3, D1, D3

12/03/2013 17:39:42

18/05/2013 11:59:47

 

2013 03 12 17 39 04

2013 03 31 23 58 58

F1, F2, F3 D1, D2, D3

2013 04 01 00 00 28

2013 04 30 23 58 40

F1, F2, F3, D1, D2, D3

29/05/2013 01:04:47

29/05/2013 03:54:48

 

2013 05 01 00 00 10

2013 05 31 23 59 39

F1, F2, F3, D1, D2, D3

30/05/2013 15:02:27

02/07/2013 09:03:27

 

2013 06 01 00 02 00

2013 07 10 16 44 40

F1, F2, F3, D1, D2, D3

05/07/2013 14:59:24

16/09/2013 16:24:09

 

2013 07 10 16 49 10

2013 07 31 23 59 06

MIM1, Inside

F1, F2, F3, D1, D2, D3

2013 08 01 00 00 37

2013 08 31 23 59 05

the phantom (behind panel 206)-

23.09.2013г

F1, F2, F3, D1, D2, D3

 

2013 09 01 00 00 01

 

2013 09 23 13 24 04

 

F1, F2, F3, D1, D2, D3

2013 09 23 14 52 00

2013 09 27 15 25 21

 

 

 

From

F1, F2, F3, D1, D2, D3

 

2013 09 27 16 16 56

 

2013 10 25 22 03 30

F1, F2, F3, D1, D2, D3

F1, F3, D1, D3

27.09.2013 to

14.02.2014г -

2013 10 25 22 05 00

2013 10 31 23 59 27

F1, F3, D1, D3

MIM1, Outside

2013 11 01 00 00 58

2013 11 30 17 17 21

F1, F2, F3, D1, D2, D3

the phantom

(behind panel

2013 12 12 13 06 22

2013 12 31 23 59 38

F1, F2, D1, D2

206)

 

2014 01 01 00 00 06

 

2014 12 31 23 58 31

F1, D1

 

2014 02 25 10 49 16

2014 04 30 23 59 27

 

 

 

 

 

Inside phantom

F1, F2, D1, D2

2014 05 01 00 00 57

2014 05 31 23 12 41

F1, F2, D1, D2

2014 06 01 00 00 07

2014 07 29 17 38 16

F1, D1

2014 08 07 14 52 45

2014 08 31 23 59 59

F1, F2, D1, D2

2014 09 01 00 00 13

2014 10 11 13 06 40

F1, D1

2014 10 11 17 02 09

2014 10 31 23 58 30

F1, F3, D1, D3

2014 11 01 00 00 00

2014 11 06 15 07 35

F3, D3

2015 03 05 14 58 55

2015 03 31 08 48 57

 

F1, F2, F3, D1, D2, D3

2015 04 01 15 01 01

2015 04 30 23 58 33

 

F1, F2, F3, D1, D2, D3

2015 05 01 00 00 05

2015 05 31 23 59 39

 

F1, F2, F3, D1, D2, D3

2015 06 01 00 01 09

2015 06 30 23 59 46

 

F1, F3,D1, D3

2015 07 02 15 15 52

2015 07 31 23 59 21

 

F1, F3, D1, D3

2015 08 01 00 00 51

2015 08 31 23 53 57

 

F1, F3, D1, D3

2015 09 01 00 00 31

2015 09 05 08 11 41

 

F1, F3, D1, D3

 

Additional references, concerning Liulin-5 data:

Dachev, T.P., J. Semkova, B. Tomov, Yu. Matviichuk, Pl. Dimitrov, R. Koleva, St. Malchev, G. Reitz, G. Horneck, G. De Angelis, D.-P. Häder, V. Petrov, V. Shurshakov, V. Benghin, I. Chernykh, S. Drobyshev, N. G. Bankov, Space Shuttle drops down the SAA doses on ISS, Adv. Space Res., 47, 2030-2038 2011. http://dx.doi.org/10.1016/j.asr.2011.01.034

Dachev, T.P., J.V. Semkova, B.T. Tomov, Yu.N. Matviichuk, Pl.G. S. Maltchev, R. Koleva, Pl., Dimitrov, N.G. Bankov, V.V., Shurshakov, V.V., Benghin, E.N., Yarmanova, O.A. Ivanova, D.-P. Häder, M.T. Schuster, G. Reitz, G. Horneck, Y. Uchihori, H. Kitamura, O. Ploc,  J. Kubancak, I. Nikolaev, Overview of the Liulin type instruments for space radiation measurement and their scientific results, 92–114, 2015. http://dx.doi.org/10.1016/j.lssr.2015.01.005

Semkova, J., R. Koleva, S. Maltchev, N. Kanchev, V. Benghin, et al., Radiation measurements inside a human phantom aboard the international space station using Liulin-5 charged particle telescope. Adv. Space Res., 45 (7), 858–865, 2010, http://dx.doi.org/10.1016/j.asr.2009.08.027

Semkova, J., and R. Koleva. Overview on the radiation quantities observed by Liulin-5 instrument in a Human Phantom on international space station during the minimum of 23rd solar cycle. Compt. Rend. Acad. Bulg. Sci., 63 (10), 1533–1542, 2010.

Semkova, J., R. Koleva, St. Maltchev, N. Bankov, V. Benghin, I. Chernykh, V. Shurshakov, V. Petrov, S. Drobyshev, and I. Nikolaev. Depth dose measurements with the Liulin-5 experiment inside the spherical phantom of the Matroshka-R project onboard the international space station. Adv. Space Res., 49, 471–478, 2012, http://dx.doi.org/10.1016/j.asr.2011.10.005

Semkova, J., R. Koleva, S. Maltchev, N. Bankov, V. Benghin, I. Chernykh, V. Shurshakov, and V. Petrov. Radiation characteristics in the spherical tissue-equivalent phantom on the ISS during solar activity minimum according the data from Liulin-5 experiment. J. Atmos. Sol. Terr. Phys., 99, 157–163, 2013a, http://dx.doi.org/10.1016/j.jastp.2012.07.006

Semkova, J., R. Koleva, N. Bankov, St. Malchev, and V.M. Petrov. Study of radiation conditions onboard the International space station by means of the Liulin-5 dosimeter. Cosmic Res., 51 (2), 124–132, 2013b, , http://dx.doi.org/10.1134/S0010952512060068

Semkova, J., Koleva, R., Maltchev, St., Bankov, N., Benghin, V., et al., Radiation characteristics in the spherical tissue-equivalent phantom on the ISS during solar activity minimum according the data from Liulin-5 experiment. J. Atmos. Sol.-Terr. Phys. 99, 157–163, 2013. http://dx.doi.org/10.1016/j.jastp.2012.07.006

Semkova J, Dachev T, Koleva R, Maltchev S, Bankov N, et al. Radiation Environment on the International Space Station During the Solar Particle Events in March 2012. Astrobiol Outreach 1: 102. 2013 http://dx.doi.org/10.4172/jao.1000102   

Semkova, J., T. Dachev, R. Koleva, N. Bankov, S. Maltchev, V. Benghin, V. Shurshakov, V. Petrov,. Observation of radiation environment in the International Space Station in 2012–March 2013 by Liulin-5 particle telescope, J. Space Weather Space Clim., 4, A32, 2014, http://dx.doi.org/10.1051/swsc/2014029

Please acknowledge data provider:

1. Jordanka Semkova, SRTI-BAS jsemkova@stil.bas.bg or: jordankasemkova@gmail.com

URL: https://scholar.google.com/citations?user=CIqDrmgAAAAJ&hl=en